Isolation and cytotoxicity of flavonoids from Daphnis

Genkwae Flos

陳瑞明

Lin JH;Lin YT;Huang YJ;Wen KC;Chen RM;Ueng TH and Liao CH

Abstract

For the purpose of quality analysis \cdot we investigated polar constituents as marker substance for some traditional herbs. From Daphnis Genkwae Flos twelve flavonoids were isolated. They were identified as potassium apigenin 7-O- β -D-glucuronate (1) \cdot apigenin 7-O- β -D-glucuronide (2) \cdot apigenin 7-O- β -D- methylglucuronate (3) \cdot apigenin (4) \cdot genkwanin 5-O- β -D-primeveroside (5) \cdot genkwanin 5-O- β -D-glucoside (6) \cdot genkwanin (7) \cdot tiliroside (8) \cdot kaempferol (9) \cdot luteolin 5-O- β -D-glucoside (10) \cdot luteolin (11) and 7-O-methylluteolin (12). Among them $\cdot 2 \cdot 3 \cdot 5 \cdot 6 \cdot 9$ and 10 were known compounds \cdot but were for the first time isolated from this material. Compound 1 was isolated from nature for the first time. The structures of 1-12 were established on the basis of their physical properties and spectroscopic evidence.

Treatments of human hepatoma HepG2 cells with 0.1 mM apigenin (4) \cdot luteolin (11) \cdot and 7-O-methylluteolin (12) for 48 hr caused 40% reduction on cell viability \cdot whereas potassium apigenin 7-O- β -D-glucuronate (1) \cdot luteolin 5-O- β -D-glucoside (10) \cdot genkwanin (7) \cdot genkwanin 5-O- β -D-primeveroside (5) \cdot and tiliroside (8) caused little or no effects on the viability of HepG2 cell. These data suggest a rough structure - activity relationship of flavonoid cytotoxicity.

Key words: Daphne genkwa

flower

Thymelaeaceae
flavonoid
cytotoxicity